Auto Transformer Example For the autotransformer setup shown below, we find the following values of voltages and currents. From these voltages and currents, we find the following load and source powers: $$P_{L} = V_{L} I_{L} = \frac{V_{S}^{2}}{R_{L}} \left[1 + \frac{N_{2}}{N_{1}} \right]^{2}$$ $$P_{S} = -V_{S} I_{S} = -\frac{V_{S}^{2}}{R_{L}} \left[1 + \frac{N_{2}}{N_{1}} \right]^{2} = -P_{L} \quad \text{(which we sould expect)}$$ We can also find the powers delivered to the two transformer windings: $$P_{1} = V_{1} I_{1} = -\frac{V_{S}}{R_{L}} \frac{N_{2}}{N_{1}} \left[1 + \frac{N_{2}}{N_{1}} \right] = \frac{N_{2} / N_{1}}{1 + N_{2} / N_{1}} x P_{L}$$ $$P_{2} = V_{2} I_{2} = \frac{V_{S}^{2}}{R_{L}} \frac{N_{2}}{N_{1}} \left[1 + N_{2} / N_{1} \right] = \frac{-N_{2} / N_{1}}{1 + N_{2} / N_{1}} x P_{L} = -P_{1} \text{ (which we sould expect)}$$ For a step-down configuration (-2 > N_2 / N_1 < 0), notice that $|P_1|/P_L|$ <1 when N_1 > $2|N_2|$, which means that the winding powers are less than the load power. This means that the transformer power rating can be less than the load power. The same thing occurs for the step-up configuration when N_1 > 0 and N_2 > 0. The plot the below shows P_1/P_L as a function of N_2/N_1 , where negative values of N_2/N_1 correspond to the reversal of one of the transformer dots. The autotransformer is step-down when $-2 > N_2/N_1 < 0$ and step-up when $N_2/N_1 > 0$ or $N_2/N_1 < 0$. This plot shows that P_1 can be either positive or negative, depending on the turns ratio and the winding polarities.